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Abstract

In this work, the dual-phase-lagging model of the microscale heat conduction is re-derived analytically from the
Boltzmann transport equation. Based on this model, the delay/advanced partial differential equations governing the
microscale heat conduction are established. The method of separation of variables is applied to solve such delay/
advanced partial differential equations. Finally, the oscillation of the microscale heat conduction is investigated.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

It has a long history to explore the macroscopic prop-
erties from the molecular level of description of the mate-
rials. This coarse-graining process allows us to bridge
the gap between microscopic and meso/macroscopic
descriptions. The understanding of coarse-graining and
its correlated theories such as transport processes and
irreversible phenomena was strengthened in the middle
of last century by people like Kirkwood [12], Green [7],
Kubo [15], Zwanzig [33–35] and many others. Recently,
the rapid development of nano-technology gives a new
impetus to this old topic. In the present work, we attempt
to re-derive the dual-phase-lagging model of microscale
heat conduction starting from the molecular level of
description, the Boltzmann transport equation.
The fundamental law of the conventional heat con-

duction is the classical Fourier law
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qðr; tÞ ¼ �krT ðr; tÞ; ð1Þ

where the temperature gradient $T(r, t) is a vector func-
tion of the position vector r and the time variable t, the
vector q(r, t) is called the heat flux, k is the thermal con-
ductivity of the material which is a positive scalar quan-
tity. This classical law has been widely and successfully
applied in the conventional engineering heat conduction
problems, in which the system has large spatial dimen-
sion and the emphasis is on the long time behavior.
However, the Fourier law suffers some drawbacks.
Firstly, it assumes the infinite speed of heat propagation,
implying that a thermal disturbance applied at a certain
location in a medium can be sensed immediately any-
where else in the medium. Secondly, because the heat
flux and the temperature gradient are simultaneous,
there is no difference between the cause and the effect
of heat flow. This is doubted in the transient behavior
at extremely short time, say, on the order of picoseconds
to femtoseconds. An example is the ultrafast laser
heating in thermal processing of materials. Thirdly,
experimental observations of heat transport of the
ed.

mailto:M.Xu@fz-rossendorf.de


Nomenclature

f distribution function
k thermal conductivity
r position vector
q heat flux
t time vector
T temperature field
v velocity vector

Greek symbols

s relaxation time
sq the phase lag of the heat flux vector
sT the phase lag of the temperature gradient
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propagation of second sound, ballistic phonon propaga-
tion and phonon hydrodynamics in solids at low temper-
atures depart significantly from the usual parabolic
description. Furthermore, due to the wide application
of microdevices and the rapid development of modern
microfabrication technology, more and more microde-
vices with micro and nano-scale dimension emerge in
various micromechanical systems. It is well known that
the conventional Fourier law leads to the unaccepted
result for these microdevices [11].
Many efforts have been spent on the improvement of

classical Fourier law. Cattaneo [3] and Vernotte [28,29]
proposed the CV model,

s
oq

ot
þ q ¼ �krT ; ð2Þ

where s is the time delay. This leads to a wave type of
heat conduction equation called hyperbolic heat conduc-
tion equation [10]. The natural extension of CV model is

qðr; t þ sÞ ¼ �krT ðr; tÞ; ð3Þ

which was discussed in Tzou [19–23]. Further improve-
ment of the model (3) leads to the dual-phase-lagging
(DPL) model by Tzou [27]. It allows either the tempera-
ture gradient (cause) to precede the heat flux vector
(effect) or the heat flux vector (cause) to precede the
temperature gradient (effect) in transient processes.
Mathematically, this is represented by [24–27]

qðr; t þ sqÞ ¼ �krT ðr; t þ sTÞ; ð4Þ

where the sT is the phase lag of the temperature gradient
and the sq is the phase lag of the heat flux vector. For the
case of sT > sq, the temperature gradient established
across a material volume is a result of the heat flow,
implying that the heat flux vector is the cause and the
temperature gradient is the effect. For sT < sq, on the
other hand, heat flow is developed by the temperature
gradient established at an earlier time, implying that
the temperature gradient is the cause. The first-order
approximation of Eq. (4) reads

qðr; tÞ þ sq
oq

ot
ðr; tÞ ffi �k rT ðr; tÞ þ sT

o

ot
½rT ðr; tÞ	

� �
.

ð5Þ
In the literatures, the dual-phase-lagging (abbreviated as
DPL) model usually refers to this model. However, in
the present paper, we mainly focus on the original
DPL model expressed in (4).
Originally, the DPL heat conduction equation comes

from the phonon–electron interaction model [17] and the
phonon scattering model [8,10]. These models have been
developed in examining energy transport involving the
high-rate heating in which the non-equilibrium thermo-
dynamic transition and the microstructural effect be-
come important associated with shortening of the
response time. The high-rate heating is developing rap-
idly due to the advancement of high-power short-pulse
laser technologies [1,6,13,14,16]. In addition to its appli-
cation in the ultrafast pulse laser heating, the DPL heat
conduction equation also arises in describing and pre-
dicting phenomena such as temperature pulses propa-
gating in superfluid liquid helium, non-homogeneous
lagging response in porous media, thermal lagging in
amorphous materials, and effects of material defects
and thermomechanical coupling etc. [27]. The study of
the DPL heat conduction is thus of considerable impor-
tance in understanding and applying these rapidly
emerging technologies. The well-posedness of DPL heat
conduction was established [30,31]. The thermal oscilla-
tion and resonance phenomena were investigated in de-
tail by Xu and Wang [32] based on the approximate
DPL model (5). Such phenomena are believed to be a
manifestation of non-equilibrium behavior of microscale
heat conduction. The Boltzmann transport equation
(BTE), a theory of non-equilibrium heat and mass trans-
port, may therefore be useful for examining the micro-
scale heat conduction.
Indeed, the BTE is playing a central role in the study of

microscale heat conduction. The classical Fourier law and
the CV model for one-dimensional case was established
from the BTE [18]. The phonon–electron interaction
model [17] was derived from BTE on a quantummechan-
ical and statistical basis. Joshi andMajumdar [11] derived
aphonon radiative transport equation between twoparal-
lel plates from the BTE for the heat transport in dielectric
solid films. Based on the BTE, Chen [4,5] proposed a bal-
listic–diffusive heat conduction equation of microscale
heat transport in devices where the characteristic length
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is comparable to the mean free path of the energy-carrier
and/or the characteristic time is comparable to the relax-
ation time of the energy-carrier. Encouraged by the suc-
cessful applications of BTE in the microscale heat
conduction, we attempt to establish the DPL model (4)
from the BTE. The governing equation of DPL heat con-
duction, which is expressed as the delay/advanced partial
differential equations, is then obtained by combining the
DPLheat conductionmodel with the energy conservation
equation. The associated initial conditions for this equa-
tion is prescribed. The method of separation of variables
is employed to solve the DPL heat conduction problems.
The oscillating features of microscale heat conduction are
also investigated.
2. Boltzmann transport equation and DPL model

2.1. Boltzmann transport equation

Consider a classical system of N particles. Each par-
ticle has s degrees of freedom so that the number of
coordinates needed to specify positions of all N particles
is l = Ns. Therefore l spatial coordinates qi and l corre-
sponding velocity coordinates vi can completely describe
the classical mechanical state of the system. We now
introduce a conceptual Euclidean hyperspace of 2l
dimensions, with a coordinate axis for each of the 2l
coordinates and velocities. This conceptual space is usu-
ally termed as the phase space for the system. The state
of the classical N-particle or N-body system at any time t
is completely specified by the location of one point in the
phase space, referred to as a phase point. The evolution
of the system state with time is completely described by
the motion or trajectory of the phase point through
phase space. The trajectory of the point is expressed
by equations of motion of the N bodies. Usually, inte-
gration of such a large system of equations is not feasi-
ble. Therefore we must use the statistical methods.
We first introduce the distribution function fpv, which

is defined by

fpvðr; v; tÞdrdv
¼ ðthe number of particles in the system that have

phase points in drdv about r and v at time tÞ.
ð6Þ

Here v and r are with components vi and ri
(i = 1,2, . . . , l), respectively, dv = dv1, dv2, . . ., dvl, and
dr = dr1, dr2, . . ., drl. By this definition, we haveZ Z Z


 
 

Z
all r;v

fpvðr; v; tÞdrdv ¼ N . ð7Þ

The ensemble average of any function w(r,v) of the posi-
tion and velocity of the system is defined by
hwi ¼ 1

N

Z Z Z

 
 


Z
all r;v

wðr; v; tÞfpv drdv. ð8Þ

The assumption that the particles do not interact with
each other leads to [2]

dfpv
dt

¼ 0. ð9Þ

This is called the Liouville equation. It indicates that if
we follow the particles in a volume element along a flow
line in phase space without collisions, the distribution is
conserved,

fpvðrþ dr; vþ dv; t þ dtÞ ¼ fpvðr; v; tÞ. ð10Þ

If collisions occurs, the distribution fpv will change over
a time interval dt by an amount (ofpv/ot)coll dt, and
therefore

fpvðrþ dr; vþ dv; t þ dtÞ � fpvðr; v; tÞ ¼ ðofpv=otÞcoll dt;
ð11Þ

which is equivalent to

fpvðrþ dr; vþ dv; t þ dtÞ � fpvðr; v; tÞ
dt

¼ ofpv
ot

� �
coll

. ð12Þ

Making use of the Taylor expansion of fpv(r + dr,
v + dv,t + dt) at the point (r,v, t), we have

Pl
j¼1

ofpv
orj
drj þ

Pl
j¼1

ofpv
ovj
dvj þ ofpv

ot dtþ higher order terms
dt

¼ ofpv
ot

� �
coll

; ð13Þ

equivalently,

ofpv
ot

þ
Xl

j¼1
vj
ofpv
orj

þ
Xl

j¼1

ovj
ot

ofpv
ovj

¼ ofpv
ot

� �
coll

. ð14Þ

This is the BTE. If we re-define the distribution function
as

f ðr; v; tÞ ¼ fpvðr; v; tÞ
N

;

then the BTE becomes

of
ot

þ
Xl

j¼1
vj
of
orj

þ
Xl

j¼1

ovj
ot

of
ovj

¼ of
ot

� �
coll

. ð15Þ

Usually, the collision term of
ot

� 	
coll
in the BTE is handled

by introducing a relaxation time, s [2]

of
ot

� �
coll

¼ � f � f0
s

; ð16Þ

with f0 as the equilibrium distribution for the system.
Suppose that a non-equilibrium distribution of velocities
is set up by external forces which are suddenly removed.



M. Xu, L. Wang / International Journal of Heat and Mass Transfer 48 (2005) 5616–5624 5619
The decay of the distribution towards equilibrium is
then obtained from (16) as

oðf � f0Þ
ot

¼ � f � f0
s

;

note that of0
ot ¼ 0 by definition of the equilibrium distri-

bution. This equation has the solution

ðf � f0Þjt ¼ ðf � f0Þjt¼0 expð�t=sÞ.

Combining Eqs. (15) and (16), we obtain the BTE within
the relaxation time approximation:

of
ot

þ
Xl

j¼1
vj
of
orj

þ
Xl

j¼1

ovj
ot

of
ovj

¼ � f � f0
s

. ð17Þ

In the following, starting from Eqs. (12) and (16) not
directly from Eq. (15), we try to re-establish the
DPL model.

2.2. Derivation of DPL model

Consider a three-dimensional heat transfer problem.
In this case, the position vector r has three components
x, y and z, the velocity vector v is expressed as
(vx,vy,vz)

T. To study the energy transport by particles,
we must solve the BTE to determine the distribution
function f(r,v, t). In most cases, however, only an
approximate distribution function can be obtained. If
this distribution function is obtained, the rate of energy
flow per unit area or the energy flux can then be ex-
pressed as

qðr; tÞ ¼
Z
all v

vðr; tÞf ðr; v; tÞeðvÞdv; ð18Þ

here q(r, t) is the energy flux vector, v(r, t) is the velocity
vector, and e(v) is the kinetic energy of the particle as a
function of particle velocity. Note that f(r,v, t) is the
fraction of system particles in the ensemble per unit vol-
ume per unit velocity. Therefore f(r,v, t)drdv is the frac-
tion of system particles in the ensemble that have phase
points in drdv about r and v.
Equation (18) can be changed to an integral over

momentum [18]:

qðr; tÞ ¼
Z
all p

vðr; tÞf ðr; p; tÞeðpÞdp; ð19Þ

where the vector p is the momentum and the distribution
f(r,p, t) is the fraction of system particles per unit volume
per unit momentum. Therefore f(r,p, t)drdp is the frac-
tion of system particles in the ensemble that have phase
points in drdp about r and p. Invoking the relation
p = mv, we have

f ðr; p; tÞdrdp ¼ mf ðr; p; tÞdrdv. ð20Þ

This equation tells us that the fraction of system parti-
cles per unit volume and per unit velocity can also be
expressed as mf(r,p, t). Therefore we have the following
relation:

f ðr; v; tÞ ¼ mf ðr; p; tÞ. ð21Þ

This equation enables us to rewrite Eq. (18) into Eq.
(19).
Introducing the spherical coordinates for the integral

in Eq. (19),

px ¼ p sin h cosu; py ¼ p sin h sinu; pz ¼ p cos h;

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þ p2y þ p2z

q
, we have

qðr; tÞ ¼
Z 1

0

Z p

0

Z 2p

0

vðr; tÞf ðr; p; tÞeðpÞp2 sin hdpdhdu.

ð22Þ

Invoking the relationship of p with the kinetic energy e
yields

qðr; tÞ ¼
Z 1

0

Z p

0

Z 2p

0

vðr; tÞf ðr;p; tÞem
ffiffiffiffiffiffiffiffi
2me

p
sinhdedhdu.

ð23Þ

We assume that no external forces act on the heat trans-
fer medium. Therefore the particle randomly accesses to
every direction with the same probability. Under this
assumption, we assert that the distribution function
f(r,p, t) only depends on the r, e and t. There is no bias
on the directions of the momentum vector p. In this cir-
cumstance, the density of states D(e) can be defined as

DðeÞ ¼
Z p

0

Z 2p

0

m
ffiffiffiffiffiffiffiffi
2me

p
sin hdhdu ¼ 4pm

ffiffiffiffiffiffiffiffi
2me

p
. ð24Þ

This is the classical definition of the density of states. If
taking into account the quantum effect, for the electron,
we have

DðeÞ ¼ m
ffiffiffiffiffiffiffiffi
2me

p

�h3p2
; ð25Þ

where �h is Planck�s constant divided by 2p. By the den-
sity of states D(e), Eq. (23) can be further transformed to
that over energy. Then the energy flux vector can be
expressed as

qðr; tÞ ¼
Z

e
vðr; tÞf ðr; e; tÞeDðeÞde. ð26Þ

From Eqs. (12) and (16), it follows that

f ðrþ dr; eðvþ dvÞ; t þ dtÞ � f ðr; eðvÞ; tÞ
dt

¼ f0 � f
s

; ð27Þ

where dr and dv are the incremental of position and
velocity vectors, respectively. Note that this equation is
an approximation. To have the right side of Eq. (27),
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f(r, e(v), t) requires approximately s periods of decay to
the equilibrium state f0. Under the assumption that no
external forces act on the heat transfer medium, the
acceleration is zero. Therefore Eq. (27) can be rewritten
as

f ðrþ dr; eðvÞ; t þ dtÞ � f ðr; eðvÞ; t þ dtÞ
dt

þ f ðr; eðvÞ; t þ dtÞ � f ðr; eðvÞ; tÞ
dt

¼ f0 � f
s

. ð28Þ

For the first term of Eq. (28), applying Taylor expansion
of f(r + dr, e(v), t + dt) at the point (r, e(v), t + dt) gives

f ðrþ dr; eðvÞ; t þ dtÞ � f ðr; eðvÞ; t þ dtÞ
dt

¼ dr 
 rf ðr; eðvÞ; t þ dtÞ þ higher order terms
dt

. ð29Þ

Therefore, there exists a value sT such that the following
expression:

v 
 rf ðr; eðvÞ; t þ sTÞ ð30Þ

is the best approximation to the first term of Eq. (28). By
assuming dt � s [18], Eq. (28) becomes

sv 
 rf ðr; eðvÞ; t þ sTÞ þ f ðr; eðvÞ; t þ sÞ ¼ f0. ð31Þ

Multiplying eD(e)v on two sides of this equation and
integrating over all possible energies yieldsZ

e
sv 
 rf ðr; eðvÞ; t þ sTÞveDðeÞde þ qðr; v; t þ sÞ ¼ 0.

ð32Þ

In deriving this equation, the relationZ
e
f0eDðeÞvde ¼ 0 ð33Þ

has been used, which is verified in the following.
For the electron, f0 is the Fermi–Dirac equilibrium

distribution

f0ðeÞ ¼
1

1þ exp e�l
kBT

� 
 ; ð34Þ

where l is the chemical potential, kB the Boltzmann con-
stant and T the temperature. For the phonon, f0 is the
Bose–Einstein equilibrium distribution

f0ðeÞ ¼
1

expð e
kBT

Þ � 1 ; ð35Þ

where e = �hx, x is the angular frequency of the quantum
harmonic oscillator. Obviously, in both cases, f0 is an
even function with respect to the velocity v. Subse-
quently the integrand in Eq. (33) is an odd function with
respect to the velocity v. Therefore the integral in Eq.
(33) vanishes.
Assume that the relaxation times sT and s do not de-

pend on the energy of the system and the system has
achieved the quasi-equilibrium state. Then $f = (df0/
dT)$T, and Eq. (32) becomes

qðr; t þ sÞ ¼ �k 
 rT ðr; t þ sTÞ; ð36Þ

where k is the thermal conductivity tensor,

k ¼
Z

svv
df0
dT

eDðeÞdDðeÞ.

For the isotropic materials, k takes the form of

k ¼ kI.

Here I is the unit matrix and k is a constant. Eq. (36)
reduces to

qðr; t þ sqÞ ¼ �krT ðr; t þ sTÞ; ð37Þ

where sq = s. This is nothing but the dual-phase-lagging
model (4). If we assume that sT = 0, Eq. (37) reduces to

qðr; t þ sÞ ¼ �krT ðr; tÞ; ð38Þ

which is the single-phase-lagging model (3).
The first-order approximation of Eq. (37) gives

qðr; tÞ þ s
oq

ot
ðr; tÞ ffi �k rT ðr; tÞ þ sT

o

ot
½rT ðr; tÞ	

� �
;

ð39Þ

which is the approximate DPL model.
3. Delay/advanced dual-phase-lagging heat conduction

equation

In this section, the relation (37) is directly employed
to establish the governing equation of microscale heat
conduction. This leads to the delay/advanced DPL heat
conduction equation. After the initial and boundary
conditions are prescribed, the initial–boundary value
problem of the delay/advanced DPL heat conduction
is formulated. The method of separation of variables is
then applied to solve such problems.

3.1. Initial–boundary value problem of delay/advanced

DPL heat conduction

In the present subsection, we aim to establish the
governing equation of the DPL heat conduction and
prescribe the initial and boundary conditions based on
the constitutive equation (37). To achieve this, the
following energy equation is required:

�r 
 qðr; tÞ þ Qðr; tÞ ¼ Cp
oT ðr; tÞ

ot
; ð40Þ

with Cp being the volumetric heat capacity, Q the volu-
metric heat source.
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For time instant t + sq, Eq. (40) becomes

�r 
 qðr; t þ tqÞ þ Qðr; t þ sqÞ ¼ Cp
oT ðr; t þ sqÞ

ot
. ð41Þ

The divergence of Eq. (37) leads to

r 
 qðr; t þ sqÞ ¼ �kDT ðr; t þ sTÞ; ð42Þ

where D is Laplacian operator.
The substitution of Eq. (42) into Eq. (41) yields

DT ðr; t þ sTÞ þ
1

k
Qðr; t þ sqÞ ¼

1

a
oT ðr; t þ sqÞ

ot
; ð43Þ

where a ¼ k
Cp
.

Equation (43) is the delay/advanced governing equa-
tion of DPL heat conduction based on the constitutive
Eq. (37).
If sq � sT > 0, Eq. (43) becomes

DT ðr; t0 � sÞ þ 1
k
Qðr; t0Þ ¼ 1

a
oT ðr; t0Þ

ot0
; for t0 > sq;

ð44Þ

in which

t0 ¼ t þ sq; s ¼ sq � sT.

This is a delay partial differential equation. Hereafter it
is termed as the delay DPL heat conduction equation.
If sq � sT < 0, we obtain

DT ðr; t0Þ þ 1
k
Qðr; t0 � sÞ ¼ 1

a
oT ðr; t0 � sÞ

ot0
; for t0 > sT;

ð45Þ

in which

t0 ¼ t þ sT; s ¼ sT � sq.

This is an advanced partial differential equation, and
hereafter we term it as the advanced DPL heat conduc-
tion equation.
Let R, Si,(i = 1,2, . . . , s) be the heat conduction re-

gion considered and the boundary surfaces of the region
R, respectively. The boundary condition of Eq. (44) or
Eq. (45) is generally written as

ki
oT ðr; t0Þ

oni
þ hiT ðr; t0Þ ¼ fiðr; t0Þ;

on the boundary surface Si; ð46Þ

where constants ki and hi satisfy k2i þ h2i 6¼ 0;
n = (n1,n2,n3) is the outward normal of surface S. The
initial condition for Eq. (44) [9] is

T ðr; t0Þ ¼ /ðr; tÞ; in the region R; t0 2 ½sT; sq	. ð47Þ

By using the relation between t and t 0, we also have

T ðr; tÞ ¼ /ðr; tÞ; in the region R; for t 2 ½�s; 0	.
ð48Þ

For Eq. (45), the following initial condition should be
specified [9]:
T ðr; t0Þ ¼ wðr; t0Þ; in the region R; t0 2 ½sq; sT	. ð49Þ

By converting t 0 into t, we have

T ðr; tÞ ¼ wðr; tÞ; in the region R; t 2 ½�s; 0	. ð50Þ

When the lagging time s is very small, initial conditions
(48) and (50) are equivalent to specify all the time deriv-
atives of temperature field at the initial moment, that is

T ðr; tÞjt¼0 ¼ T 0ðrÞ;
oT ðr; tÞ

ot

����
t¼0

¼ T 1ðrÞ;

o2T ðr; tÞ
ot2

����
t¼0

¼ T 2ðrÞ; . . . ;
onT ðr; tÞ

otn

����
t¼0

¼ T nðrÞ; . . . ;

ð51Þ

where Tn (n = 0,1,2, . . .) are given functions of the posi-
tion vector r. Note that the initial–boundary conditions
(48) and (50) are quite different from those of DPL heat
conduction problems using the approximate DPL model
(39).

3.2. Solution of delay DPL heat conduction problem

In this section the method of separation of variables is
employed to obtain the solution of the initial–boundary
condition problem of the delay DPL heat conduction.
From Section 3.1, the delay DPL heat conduction

problem is mathematically formulated as

1

a
oT ðr; t0Þ

ot0
¼ DT ðr; t0 � sÞ; in the region R; for t0 > sq;

ð52Þ

ki
oT ðr; t0Þ

oni
þ hiT ðr; t0Þ ¼ 0; on the boundary surface Si;

ð53Þ
T ðr; t0Þ ¼ /ðr; t0Þ; t0 2 ½sT; sq	; ð54Þ

where i = 1,2, . . . , s, sq > sT, /(r, t 0) is a continuous func-
tion in the interval [sT,sq].
By the method of separation of variables, let

T ðr; t0Þ ¼ X ðrÞCðt0Þ. ð55Þ

Substitution of Eq. (55) into Eq. (52) yields

1

a
C0ðt0Þ

Cðt0 � sÞ ¼
DX ðrÞ
X ðrÞ ; ð56Þ

where C 0(t 0) is the derivative of C(t 0) with respect to the
time variable t 0. Therefore,

C0ðt0Þ ¼ �ab2Cðt0 � sÞ; ð57Þ
DX ðrÞ þ b2X ðrÞ ¼ 0; ð58Þ

where b is a real number. Substituting Eq. (55) into Eq.
(53) leads to

ki
oX ðrÞ
oni

þ hiX ðrÞ ¼ 0. ð59Þ
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Thus Eqs. (58) and (59) form an eigenvalue problem.
Note that this problem has non-trivial solutions only
for certain discrete values of b. Such discrete values
and solutions are called eigenvalues and eigenfunctions,
respectively. Let bi (i = 1,2, . . .) be the eigenvalues, Xi(r)
(i = 1,2, . . .) the corresponding eigenfunctions. A func-
tion F(r) can be expanded as a generalized Fourier series

F ðrÞ ¼
X1
i¼1

F iX iðrÞ; ð60Þ

where

F i ¼
R
R F ðrÞX iðrÞdRR

R X
2
i ðrÞdR

.

Substituting b = bi into Eq. (57) yields

C0
iðt0Þ ¼ �ab2i Ciðt0 � sÞ. ð61Þ

Assuming that we have found the solution of Eq. (61),
the complete solution of the problem (52)–(54) can be
written, by the superposition principle, as

T ðr; t0Þ ¼
X1
i¼1

Ciðt0ÞX iðrÞ. ð62Þ

By applying the initial condition (54), we have

X1
i¼1

Ciðt0ÞX iðrÞ ¼ /ðr; t0Þ; t0 2 ½sT; sq	;

which yields, by using the orthogonality of the eigen-
function set of Xi(r),

Ciðt0Þ ¼ /iðt0Þ; t0 2 ½sT; sq	. ð63Þ

Here

/iðt0Þ ¼
R
R /ðr; t0ÞX iðrÞdRR

R X
2
i ðrÞdR

ði ¼ 1; 2; . . .Þ.

Note that Eqs. (61) and (63) constitute a problem of de-
lay ordinary differential equations. We can use the meth-
od of steps or so called continuous method to solve this
problem.
Integrating both sides of Eq. (61) over the interval

[sq, t 0] yields

Ciðt0Þ ¼ CiðsqÞ � ab2i

Z t0

sq

Ciðt0 � sÞdt0. ð64Þ

Note that if t 0 2 [sq,sq + s],

sT 6 t0 � s 6 sq.

By Eq. (63), we thus have

Ciðt0Þ ¼ /iðsqÞ � ab2i

Z t0

sq

/iðt0 � sÞdt0. ð65Þ

We can proceed in this way by extending the definition
of C(t 0) from one interval to the next. Finally the solu-
tion of Eq. (61) subject to the initial condition (63) can
be obtained.

3.3. Solution of advanced DPL heat conduction problem

In the present subsection, the method of separation
of variables is applied to solve the advanced DPL heat
conduction problem, which is mathematically formu-
lated as follows, by Section 3.1,

DT ðr; t0Þ ¼ 1
a
oT ðr; t0 � sÞ

ot0
; in the region R; t0 > sT. ð66Þ

ki
oT ðr; t0Þ
oni

þhiT ðr; t0Þ ¼ 0; on the boundary surface Si;

ð67Þ
T ðr; t0Þ ¼wðr; t0Þ; t0 2 ½sq;sT	; ð68Þ
where i = 1,2, . . . , s, k2i þ h2i 6¼ 0, w(r, t 0) has infinitely
continuous derivatives with respect to the time variable
t 0.
By the method of separated variables

T ðr; t0Þ ¼ X ðrÞCðt0Þ. ð69Þ

Substituting Eq. (69) into Eq. (66) leads to

oC0ðt0�sÞ
ot0

aCðt0Þ ¼
DX ðrÞ
X ðrÞ . ð70Þ

The condition under which Eq. (70) holds is that both
sides of Eq. (70) is equal to a constant, say, �b2,

DX ðrÞ þ b2X ðrÞ ¼ 0; ð71Þ
oC0ðt0 � sÞ

ot0
¼ �ab2Cðt0Þ. ð72Þ

Substitution of Eq. (69) into Eq. (67) yields

ki
oX ðrÞ
oni

þ hiX ðrÞ ¼ 0;

on the boundary surfaces Si ði ¼ 1; 2; . . . ; sÞ. ð73Þ

Hence Eqs. (71) and (73) constitute an eigenvalue prob-
lem. Let bi (i = 1,2,3, . . .) be the eigenvalues, Xi(r) the
corresponding eigenfunctions. According to the Sturm–
Liouville theory, the eigenfunctions Xi(r) (i = 1,2, . . .)
have the orthogonal property.
Setting b = bi in Eq. (72) yields

C0
iðt0 � sÞ ¼ �ab2i Ciðt0Þ. ð74Þ

If the solution of Eq. (74) is obtainable, the complete
solution of the problem (66)–(68) can be written, by
the superposition principle, as

T ðr; t0Þ ¼
X1
i¼1

Ciðt0ÞX iðrÞ. ð75Þ

Substituting Eq. (75) into Eq. (68) yields

X1
i¼1

Ciðt0ÞX iðrÞ ¼ wðr; t0Þ; t0 2 ½sq; sT	; ð76Þ
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which leads to, by the orthogonality of the set of func-
tions Xi(r),

Ciðt0Þ ¼ wiðt0Þ; t0 2 ½sq; sT	. ð77Þ

Here

wiðt0Þ ¼
R
R wðr; t0ÞX iðrÞdRR

R X
2
i ðrÞdR

.

Thus Eqs. (74) and (77) constitute a problem of ad-
vanced ordinary differential equation, which can be
solved by the method of steps.
If t 0 2 [sT,sT + s], it follows from Eqs. (74) and (77)

that

Ciðt0Þ ¼ � 1

ab2i

owiðt0 � sÞ
ot0

. ð78Þ

If t 0 2 [sT + s,sT + 2s], we obtain from Eqs. (74) and
(78)

Ciðt0Þ ¼
1

a2b4i

o2wiðt0 � 2sÞ
ot02

. ð79Þ

By continuing this process, Ci(t
0) can be determined for

every time instance t 0.
4. Oscillation of delay/advanced DPL heat conduction

We know that the DPL heat conduction demon-
strates wave-like behavior, such as the thermal oscilla-
tion and resonance [32]. It is interesting to examine
whether the delay/advanced DPL heat conduction also
exhibits the wave-like behavior.
First we present a fundamental result regarding the

oscillation behavior of the delay/advanced ordinary dif-
ferential equation [9].

Lemma 1. Consider the differential equation

_CðtÞ þ pCðt � sÞ ¼ 0; ð80Þ

where p and s are two real numbers. Every solution of Eq.

(80) oscillates if and only if

ps >
1

e
; ð81Þ

where e = 2.71828. . .

Firstly, we attempt to seek the necessary and suffi-
cient condition for the occurrence of oscillations of the
delay differential equation

_Ciðt0Þ ¼ �ab2i Ciðt0 � sÞ; t0 > sq; ð82Þ

where s = sq � sT > 0.
Applying Lemma 1 to Eq. (82), we readily obtain the

following theorem.
Theorem 11.1. The necessary and sufficient condition for

every solution of Eq. (82) (it is a special case of (80) with

p ¼ ab2i ) to be oscillating is

ab2i s >
1

e
ði ¼ 1; 2; 3; . . .Þ. ð83Þ
Since the oscillation is a wave feature, the delay DPL
heat conduction equation will have wave-like solution
under the condition (83). Therefore the resonance could
occur sometimes for the system with a temporally peri-
odic heat source.
For the advanced differential equation, we have

_Ciðt � sÞ ¼ �ab2i CiðtÞ; t > sT; ð84Þ

where s = sT � sq is a non-negative constant. If we let

t0 ¼ t � s;

Eq. (84) becomes

_Ciðt0Þ ¼ �ab2i Ciðt0 þ sÞ; t0 > sq; ð85Þ

which is also a special case of Eq. (80) with s replaced by
�s and p ¼ ab2i . However, because s > 0,

ab2i ð�sÞ < 1
e
. ð86Þ

Therefore, the solution of Eq. (84) will not oscillate by
Lemma 1.
5. Concluding remarks

We assume that no external forces act on the heat
transfer medium, the relaxation times sT and sq are inde-
pendent on the energy of the system and the system has
achieved the local quasi-equilibrium state. Under these
assumptions, the dual-phase-lagging model is derived
from the Boltzmann transport equation. This forms
the foundation of the model. This model leads to a de-
lay/advanced partial differential equation of microscale
heat conduction. The initial–boundary problem of the
delay/advanced partial differential equation is formu-
lated mathematically. The method of separation of vari-
ables is applicable for solving this problem. The
condition under which the thermal oscillation occurs is
also established.
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